TABLE 8.1-3.-TEMPERATURE (F) ENTERING APCS ABOVE WHICH METALS ARE CLASSIFIED AS VERY **VOLATILE IN COMBUSTION OF CHLORINATED WASTES** | Metal | | Thermal Input (MMBtu/hr) ¹ | | | | | |-----------|--------|---------------------------------------|------|------|------|-------| | Name | Symbol | 1 | 10 | 100 | 1000 | 10000 | | Arsenic | As | 320 | 280 | 240 | 200 | 160 | | Cadmium | Cd | 1040 | 940 | 860 | 780 | 720 | | Chromium | Cr | >140 | >140 | >140 | >140 | >140 | | Beryllium | Be | 1680 | 1440 | 1240 | 1080 | 980 | | Antimony | Sb | 680 | 600 | 540 | 480 | 420 | | Barium | Ва | 2060 | 1840 | 1680 | 1540 | 1420 | | Lead | Pb | >140 | >140 | >140 | >140 | >140 | | Mercury | Hg | 340 | 300 | 260 | 220 | 180 | | Silver | Ag | 1080 | 940 | 840 | 740 | 660 | | Thallium | TI | 900 | 800 | 700 | 620 | 540 | FOOTNOTE: 1 Interpolation of thermal input is not allowed. If a BIF fires between two ranges, the APCS temperature under the higher thermal input must be used. Example: For a BIF firing 10-100 MMBtu/hr, Mercury is considered very volatile at APCS temperatures above 260 F and volatile at APCS temperatures of 260 F and below. A waste is considered chlorinated if chlorine is present in concentrations greater than 0.1 percent by weight. In the US EPA guidance document "Guidance for Metals and Hydrogen Chloride Controls for Hazardous Waste Incinerators, Volume IV of the Hazardous Waste Incineration Guidance Series, "(1) one percent is used for the chlorinated/nonchlorinated cutoff. However, best engineering judgement, based on examination of pilot-scale data reported by Carroll et al. (2) on the effects of waste chlorine content on metals emissions, suggests that the 1 percent cutoff may not be sufficiently conservative. Tables 8.1-2 and 8.1-3 were compiled based on equilibrium calculations. Metals are classified as very volatile at all temperatures above the temperature at which the vapor pressure of the metal is greater than 10 percent of the vapor pressure that results in emissions exceeding the most conservative risk-based emissions limits. ## 8.2 APCS RE Default Values for HCl and Cl2 Default assumptions for APCS RE for HCl in BIFs are shown in Table 8.2-1. This table is identical to the column for other BIFs except that cement kilns have a minimum HCI removal efficiency of 83 percent. Because of the alkaline nature of the raw materials in cement kilns, most of the chlorine is converted to chloride salts. Thus, the minimum APCS RE for HCl for cement kilns is independent of the APCS train. Removal efficiency of Cl₂ for most types of APCS is generally minimal. Therefore, the default assumption for APCS RE for Cl₂ for all APCSs is 0 percent. This is applicable to all BIFs, including cement kilns. ## 8.3 APCS RE Default Values for Ash Default assumptions for APCS RE for PM are also shown in Table 8.1-4. These figures are conservative estimates of PM removal efficiencies for different types of APCSs. They are identical to the figures in the Nonvolatile APCS RE column for hazardous metals presented in Table 8.1-1 because the same collection mechanisms and collection efficiencies that apply to nonvolatile metals also apply to PM.